currents--

Features Editor: Dale Strok = dstrok@computer.org

trends,
people,
projects

Gelebrating Peopleware’s

20th Anniversary

Ed Yourdon

t the 2007 International Conference
on Software Engineering in Min-
neapolis, I had the honor of partici-
pating in a panel session celebrating
the 20th anniversary of the publica-
tion of Peopleware with five of the
software field’s luminaries: Tom DeMarco and
Tim Lister (the book’s authors), and Barry
Boehm, Fred Brooks, and Linda Rising. The
panel was conceived, organized, and moder-
ated by Steve Fraser, who deserves great credit
for putting it all together and keeping the
panel from degenerating into pandemonium.

The panel members

Barry Boehm is the “father” of software en-
gineering economics. His 1981 opus, Soffrware
Engineering Economics, should be read along
with his newer, vintage-2000 book, Soffrware
Cost Estimation with CocoMmo-II. Barry orig-
inated the COCOMO software cost-estimating
model, the spiral model of software develop-
ment, and several other key ideas in software
engineering. In addition to ongoing research in
these areas, he teaches SE and computer sci-
ence at the University of Southern California.
During the panel discussion, he noted that un-
dergraduate CS students are often taught that
people are abstractions (for example, they’re
taught to create system models and diagrams
that represent users with stick figures labeled
Uy, Uy, ..., U,). They’re also taught that proj-
ect staffing is a “packaging” problem—if you
need to accomplish X person-hours of work in
Y calendar months, then you need Z people

IEEE SOFTWARE Published by the IEEE Computer Society

(often known as “resources,” another abstrac-
tion) to get the work done. So, Barry said, it’s
a shock for such students to read Peopleware
and to be told that concepts such as “jelling”
and “teamicide” are realities.

Fred Brooks is known for his work on the
first big mainframe operating system, IBM’s
0S5/360. He’s even better known for his land-
mark book The Mythical Man-Month and for
numerous technical papers such as “No Silver
Bullet,” published in Computer (Apr. 1987). He
told the audience that it’s been 20 years since he
has taught, or focused seriously, on SE; most of
his work at the University of North Carolina is
in virtual reality. But he still insists that all his
students read Peopleware, and he predicts that
the book will survive a long, long time. Why?
For the same reason, he says, that the stories of
Homer have survived for thousands of years:
they’re stories about people, and those stories
are just as true today as they were a thousand
years ago. Brooks emphasizes four key points
from Peopleware to his students:

B The importance of team jelling and team-
icide—a concept with which many CS stu-
dents, having worked mostly on individual
projects during their education, are entirely
unfamiliar.

B The importance of “space”—that is, giving
software engineers a decent working envi-
ronment, rather than a cramped cubicle
with Muzak blaring from the ceiling.

B The emphasis on “people quality”—some
people can write programs that are 10 times

0740-7459/07/$25.00 © 2007 IEEE

faster and smaller, and they can do so 10 to
20 times faster. (For the first significant
documented evidence of these differences,
see “Exploratory Experimental Studies
Comparing Online and Offline Program-
ming Performance,” by Harold Sackman,
Warren Erikson, and E. Eugene Grant, in
the January 1968 Communications of the
ACM.) So, companies should try to hire
such people and should recruit, nurture, re-
ward, and protect them.

B The (negative) impact of moving a large
software project, en masse, from one geo-
graphical location to another. A very few
such projects survive a move, Brooks said,
but only by starting over.

Perhaps I was on the panel because of the ru-
mor that Tom and Tim were initially going to ti-
tle Peopleware “All the Things Ed Yourdon
Screwed Up When He Was Our Manager.” But
I think my sins (at least in that area) have been
either forgiven or forgotten, and I did my best to
avoid causing too much trouble on the panel. I
told the audience that I had begun working in
the software field—and wrote my first few tech-
nical books—during a period of youthful
naiveté when I thought that software develop-
ment was a technical task, to be performed in a
rational manner by mature adults. I gradually
learned otherwise, although it was quite a shock
to read Gerald Weinberg’s The Psychology of
Computer Programming in 1971 and learn that
software was at least partly a touchy-feely activ-
ity carried out by “people.” Sixteen years later,
a new generation of software developers was
equally shocked by the similar message in Peo-
pleware, and 1 suggested to the audience that
some of them listening today, in 2007, might be
equally shocked by what they were hearing in
the panel session.

Linda Rising is an expert in object-design
metrics and has done a great deal of work in
introducing software patterns and practices
into organizations, including coauthoring
Fearless Change with Mary Lynn Manns. She
referred to Christopher Alexander’s 1977
book A Pattern Language and his 1979 book
The Timeless Way of Building, and asked how
many in the audience had heard of him. Sur-
prisingly (to me, at least), roughly 75 percent
raised their hands. She suggested that many of
us in the software field had borrowed Alexan-
der’s ideas about patterns without realizing it.
She might or might not have been aware that
my colleague Larry Constantine and I had

borrowed an even earlier collection of Alexan-
der’s ideas from his 1964 book Notes on the
Synthesis of Form as the basis for the struc-
tured-design concepts of coupling and cohe-
sion. Rising said she was interested in people-
related patterns, too. She said that one of the
things she likes best from Peopleware is the
story of Holger Danske, the legendary sleep-
ing giant who will awaken if Denmark is in
danger. DeMarco and Lister compare the staff
of a large software company to the giant.

Tim Lister has been Tom’s professional col-
league and book-writing partner since 1976. He
and Tom have written several books together,
the most recent being Waltzing with Bears:
Managing Risks on Software Projects. Tim sug-
gested that 20 years might be a little too early to
have a retrospective on Peopleware, but went
on to tell us how he and Tom conceived of the
book and collected the material for its contents.
What was originally just a few slides for the
just-before-lunch session of a seminar they were
teaching unleashed a torrent of stories from
real-world software managers about the good,
the bad, and the ugly peopleware-related expe-
riences in their projects. Looking forward, Tim
encouraged the agile development community
to continue exploring new ideas, and he encour-
aged all of us to read Artful Making: What
Managers Need to Know about How Artists
Work, by Rob Austin and Lee Devin.

Tom DeMarco initially gained fame by writ-
ing one of the first, and by far the most read-
able, textbooks on structured analysis: Struc-
tured Systems Analysis and Specification. He
has since written several other books, including
Peopleware. Tom emphasized that Peopleware
had been written as a team effort with Tim.
Emphasizing something Tim had said earlier,
Tom told the audience that owning half of
something wonderful was far better than own-
ing all of something that was merely “okay.”
And while this half-ownership was something
he obviously felt strongly about, in terms of his
own experience, he suggested that it was really
a metaphor for something all of us should strive
for in our work. There’s a “multiplier” effect
that you can achieve from the work that you do
as part of a team, especially with people you
like and respect. But he said this phenomenon
was unpredictable and referred obliquely to a
coauthoring project in which the two authors
never spoke to one another after they had fin-
ished the book.

Repeating some of Tim’s themes, Tom said
that Peopleware had let them become a “clear-

There's a
“multiplier”
effect that you
can achieve
from the work
that you do as
part of a team,
especially with
people you like
and respect.

September/October 2007 1EEE SOFTWARE 97

inghouse” for ideas about better ways of
dealing with people in the IT profession.
But he said that in some ways it was a
failure—especially in persuading IT man-
agers to provide better working condi-
tions for their programmers and software
engineers. He was pleased that phrases
from the book such as “furniture police”
have entered the common lexicon. How-
ever, all the book’s rational, quantitative
arguments (including results from a mas-
sive 600-person coding “war game”)
showing a positive correlation between
decent office space and dramatically im-
proved productivity and quality have had
little or no effect on managers. They still
try to squeeze the maximum number of
people into the minimum number of cu-
bic feet of office space.

The discussion

Michael, an audience member from
Switzerland, told us that he had very
much enjoyed Peopleware, but he
wondered why agile development
methodologies had taken so long to be-
come known and accepted.

m Tom quipped, “It’s all Barry’s fault!”
He suggested that we had all been
brainwashed by Barry’s argument,
first published in his Software Engi-
neering Economics, that the cost of
repairing defects rises exponentially
the later they’re found in the soft-
ware life cycle. (For a more recent
exposition of this point, see “The
Software Quality Lifecycle,” by
Yochi Slonim, in the 19 December
2005 Dr. Dobb’s.) As a result, the
commandment “Get the require-
ments right!” was drummed into the
heads of a generation of software en-
gineers. Tom turned toward Barry,
smiled, wagged his finger, and said,
“And I have never forgiven you!”

B Barry explained that, back in the
1970s, he had linked up with Win
Royce at TRW,, where the two of them
found that the waterfall methodology
worked pretty well. But he acknowl-
edged that they were working in a
time and an application domain
(aerospace and military systems) in
which the end user’s requirements
were fairly well defined. Conse-

98 IEEE SOFTWARE www.computer.org/software

quently, it made a great deal of sense
to capture those requirements early,
rather than discover later on that a
great deal of software had been built
to implement the wrong require-
ments. Barry acknowledged that by
the 1980s, things had begun to change
drastically, and obviously this contin-
ues to be true.

m [answered Michael’s question with
a broader question of my own: Why
has our field taken so long to assim-
ilate and accept any of the SE ideas
that we all agree are useful, impor-
tant, and generally successful? I sug-
gested that if we were to conduct an
informal poll about not only agile
methodologies but also code inspec-
tions, identification of “error prone”
modules, and so on, we would prob-
ably find that only 10 percent of the
audience was actually using them.

m Linda suggested that the software in-
dustry grew to its present (enormous)
size before it was ready—so we’ve al-
ways been searching for a model to
emulate, whether it’s architecture or
other engineering disciplines.

Larry from the Stevens Institute of
Technology suggested that the main
driver in our industry is fun. How can
we organize our work—which consists
of long hours of monotony, separated
by moments of ecstasy—and ensure
that our employers still make a profit?

Why has our field
taken so long
to assimilate and accept
any of the SE ideas that
we all agree are useful,
Important, and generally
successful?

Linda responded by telling us that
she had recently given a talk on sex
among primates and how it all re-
lated to agile software development.
If we can presume that sex is fun (at
least for primates), maybe she’s got
one answer to Larry’s question.
Tom suggested that “fun” equates to
“play,” and said he had been influ-
enced by Alan Kay’s distinction be-
tween “hard play” and “soft play.”
Soft play, he suggested, is like watch-
ing American Idol, while hard play
is like learning to play the piano.
Fred said that OS/360 was a once-in-
a-lifetime experience, that he and his
team felt they really could change
the world—much like the comments
we used to hear from the original
Macintosh team at Apple back in the
mid-1980s. Part of the fun, he said,
is being on a winning team.

Barry suggested that we tend to over-
emphasize the contractual nature
of many software development proj-
ects—especially when the user-devel-
oper relationship in an in-house proj-
ect gets transformed into a more
formal vendor-customer relationship
for an externally developed system.
We need to emphasize helping clients
(or users) to win, too, he said, and
look for win-win situations.

I reminded the audience of the phe-
nomenon we see in the open source
area: people often work at a “day
job” that they hate, side-by-side with
coworkers they despise, and taking
orders from a manager they loathe.
But then they leave their day job,
march into their office at home
(which is often equipped with more
up-to-date computer facilities than
what their employer gives them), and
start having fun on an open source
project they love, with coworkers
(located all over the world) they re-
spect. So the business of having fun
doesn’t have to be an all-or-nothing
proposition; we all have to find a
way to pay the rent and put food on
the table, but it doesn’t have to oc-
cupy us 16 hours a day.

m Fred suggested that only a small

fraction of people on this planet
have the luxury of working on some-

thing they consider fun. The fact
that many of us in the software field
can do so means that we’re blessed.

Mary Poppendieck offered a com-
ment rather than a question. She gave
Fred Brooks a hard time by telling him
that she had heard of his book in 1975

but didn’t like the term “man-month.”

B Fred said that he was sorry if the ti-
tle offended her and that even lib-
eral people in the mid-70s were us-
ing that phrase. And besides, he
said, the title was alliterative:
“Mythical Person-Month” doesn’t
roll off your tongue so easily.

An audience member named Earl
asked how he and his colleagues could
take the panel’s experience and transfer
it to his CS students.

m Linda remarked that our whole edu-
cational model is flawed. It reminds
her of the Monty Python Theory of
Education, which involves slicing
open the presenter’s head, scooping
out knowledge, slicing open the stu-
dents’ heads, and distributing the
knowledge around in some fashion.
We should be moving toward an ap-
prentice/mentor model, she said,
much like we see in fields such as ar-
chitecture. Students should see soft-
ware “masterpieces” from which
they can learn.

B Tim suggested that Earl was taking
on too much responsibility for trans-
ferring the panel’s experience to his
students. Software, he said, is like
paint: it’s a medium that you use dif-
ferently depending on whether you
plan to paint a wall or a Rembrandt.
He argued vociferously that the really
big failure isn’t in the universities but
in IT organizations. Companies to-
day invest zero in training, which is
quite different from the situation he
recalls when he first got into the field
in the mid-1970s.

m Tom pointed out that we might be
able to use middle schools as a guide:
because of understaffing and over-
crowded classrooms, industry people
are working with teachers as partners.

And the teachers are putting kids into
teams so that they can help each other.
The teachers will tinker with the
teams to increase the chances of
jelling, and will tell them that every-
one in the team gets the same grade.

B Barry said that his university is work-
ing on this problem at the master’s-
degree level and is trying to figure out
how to take it down to the freshman
level in undergraduate curricula.

m Fred said, “People learn most con-
cepts by induction from examples.
Then, we’re so pleased at having dis-
covered the generalization that we
all teach by deduction from the gen-
eralization (just as I'm doing with
this very statement). Thus we create
an impedance mismatch between the
learner and the teacher.” By con-
trast, what makes Peopleware popu-
lar is that it’s readable. And the rea-
son it’s so readable is that it tells
stories—vignettes such as the tale of
the furniture police. We need to do
more of this in universities, and pass
on the wisdom of the panelists and
Peopleware by telling more stories in
our CS classes.

Steve Easterbrook from the Univer-
sity of Toronto asked, “Why is there so
little research on peopleware-related
topics in academic circles?” Someone
in the audience immediately yelled
“Tenure!” which drew some chuckles
and laughter from everyone else.

Software is like paint:
It's @ medium that
vou use differentiy
depending on whether
vou pian to paint a wall
or a Rembrandt.

®m Linda said that when she decided to
go back to graduate school, she had
trouble finding anyone on the fac-
ulty who was interested in such top-
ics. The implication, of course, is
that this phenomenon becomes self-
perpetuating.

® Tom told us that he had submitted
several papers to previous ICSE con-
ferences on peopleware-related top-
ics—which he described as “squishy.”
Unfortunately, most of those papers
were rejected, except for a few that
were finally accepted as “experience
papers.”

Kevin Sullivan from the University
of Virginia asked why we’re having
such trouble attracting people in the
CS field, considering that many studies
indicate that software offers the best
jobs in the best geographical locations.

® Tom responded that when software
was first identified as an “industry,”
it had zero revenues; by 1985, as he
recalled, its annual revenues were ap-
proximately $31 billion. Most of
that money was spent on salaries,
and many of the people who worked
in the field were women, because it
paid much better than most of the
other jobs available to them. But
about five years ago, he said, women
started moving out of CS and SE to
medicine, law, and other professions.
Tom suggests that this is because the
workplace is now so unfriendly and
uncomfortable—which includes, he
says, the all-too-common experience
of having to sit through one boring
meeting after another, rather than
doing interesting work.

m Fred agreed with the part about
meetings: back in the 1960s, he
said, meetings were short.

m Barry pointed out that one reason for
the difficulty of attracting people into
the computer field in Europe is that
most of the large hardware compa-
nies there have gone out of business.

m I suggested that another reason for the
phenomenon is that high school grad-
uates—at least in the US—have been
hearing about offshore outsourcing
and are concerned that all the high-

September/October 2007 1EEE SOFTWARE 99

paying software jobs are moving to
India. So, they’re worried that if they
major in CS or SE, they won’t be able
to get a job when they graduate.
Whether or not this is actually true,
it’s the perception that influences a
university student’s choice of a major.

David Jansen from Cal Poly State
University, San Luis Obispo, Califor-
nia, told us that his students enjoy
reading Peopleware and that they use
some of the material they’ve learned—
stories about the furniture police—
when going through interviews with
prospective employers.

Rob Deline from Microsoft told us
that his company has been researching
peopleware-related issues. He noted
that several people on the panel had
written the textbooks for which they
were best known while they were
working in industry, after which they
moved on to academia. Why, he asked,
did this happen?

® Barry told us that his university
does have an industry affiliate pro-
gram ... which implied that he in-
terpreted Rob’s question slightly dif-
ferently than I had: do industry
people maintain any kind of rela-
tionship with academia?

B Linda said that she gives talks at
universities almost whenever asked
to do so—and suggested that uni-
versities should be doing more of
this (not just by inviting her more
often, but by inviting all kinds of
computer people from industry).

Tom from an English university sug-
gested that we have a crisis related to get-
ting more people interested in studying
CS but that it starts at a much younger
age—students as young as 11 to 14 are
getting turned off to math, science, and
computing. How can we change this?

m Tom suggested that we need to pro-
vide more educational materials to
encourage hard play in the curricu-
lum, in the sense that he described
earlier. I think another good exam-
ple of this kind of hard play is the
Logo programming language that

100 I1EEE SOFTWARE www.computer.org/software

Seymour Papert and his colleagues
developed years ago. Tom also
noted that Roger Pressman, whose
SE book is probably the most
widely used text of its kind in uni-
versities, said that teachers need
more support. I guess he was imply-
ing that it’s hard to prevent kids
from getting turned off if you’re fac-
ing an overcrowded classroom and
can’t give them individual attention.

B Barry suggested that both universities
and industry could help the situation
by sponsoring more career days,
where parents come into the class-
room to explain what they do. This,
of course, has been going for years in
other fields, with parents telling the
kids what it’s like to be a soldier, a
fireman, a policeman, or a doctor.

m Fred noted that his university also
gives laboratory presentations on
virtual reality to middle-school chil-
dren. He suggested that we need to
think more about using simulations
as a teaching mechanism.

B I suggested that all of this might be
moot because of offshore outsourc-
ing. Several CEOs of high-tech Amer-
ican firms have been heard to say that
their firms will continue to prosper
for the foreseeable future, even if they
never hire another American again—
because there’s an ample supply of
well-educated, lower-paid, hard-
working graduates from China, In-
dia, and other parts of the world.

Both universities
and industry could
help the situation by
sponsoring more career
days, where parents
come into the classroom
to explain what they do.

a close, Steve Fraser asked the pan-
elists to summarize their thoughts
and positions:

w ith our scheduled time drawing to

m Barry told us that personnel is one
of the top 10 risks in software proj-
ects, so we should keep it in mind.
And companies should devote more
attention to retaining the good peo-
ple that they have.

m Tom repeated the primary theme
from Peopleware: The major prob-
lems of our industry are sociologi-
cal, not technological.

m Fred told us to remember one word:
people. It’s easy, he said, for us uni-
versity people to forget that it’s peo-
ple, not papers, that count. (That
was a take-off on GE’s slogan that
“Progress is our most important
product.”)

B Tim said that if we want to have
fun, we should push decisions down
in the hierarchy. And we should re-
member that the prime assets in our
software organizations are people in
the 25-30 age range; we should
leave them alone and buffer them
from corporate bureaucracy.

m Linda suggested that all of this seems
so obvious; why do we need People-
ware? She said that her studies of cog-
nitive psychology and primate sex
taught her that, under stress, people
fall apart and forget essential things
that they would otherwise practice
quite competently. Patterns help us
crawl out of a bad situation, and the
stories in Peopleware have become
patterns.

m [suggested that both the panelists
and audience had offered a lot of
good ideas and that we should cap-
ture those ideas and distribute them
more widely. Thus, you have this
panel report.

With that, the panel session came to a
close, and we all went our merry way. @

Ed Yourdon is a software consultant in his own firm,
Nooruov, as well as a cofounder and senior consultant of the
Cutter Consortium. Contact him at yourdon@mac.com; www.
yourdon.com.

